Given,
y = 2w+4u
var(w) = 5
cov(w,u) = 1
-----------------------------------------------------------
To find, cov(y,w) = E(yw) - E(y)E(w)
i.e, cov(y,w) = 2E(w^2) + 4E(uw) - [E(2w+4u)E(w)]
= 2E(w^2) + 4E(uw) - [2E(w)^2+4E(u)E(w)]
= 2E(w^2) + 4E(uw) - 2E(w)^2-4E(u)E(w)
= 2[E(w^2 - E(w)^2)] + 4[E(uw) - E(u)E(w)]
= 2var(w) + 4cov(w,u)
= (2 × 5) + (4 × 1)
= 10 + 4 = 14
Thq ...😊
Given,
y = 2w+4u
var(w) = 5
cov(w,u) = 1
-----------------------------------------------------------
To find, cov(y,w) = E(yw) - E(y)E(w)
i.e, cov(y,w) = 2E(w^2) + 4E(uw) - [E(2w+4u)E(w)]
= 2E(w^2) + 4E(uw) - [2E(w)^2+4E(u)E(w)]
= 2E(w^2) + 4E(uw) - 2E(w)^2-4E(u)E(w)
= 2[E(w^2 - E(w)^2)] + 4[E(uw) - E(u)E(w)]
= 2var(w) + 4cov(w,u)
= (2 × 5) + (4 × 1)
= 10 + 4 = 14